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Abstract. We present CheXtriev, a graph-based, anatomy-aware frame-
work for chest radiograph retrieval. Unlike prior methods focussed on
global features, our method leverages graph transformers to extract in-
formative features from specific anatomical regions. Furthermore, it cap-
tures spatial context and the interplay between anatomical location and
findings. This contextualization, grounded in evidence-based anatomy,
results in a richer anatomy-aware representation and leads to more accu-
rate, effective and efficient retrieval, particularly for less prevalent find-
ings. CheXtriv outperforms state-of-the-art global and local approaches
by 18% to 26% in retrieval accuracy and 11% to 23% in ranking quality.
The code is available at https://github.com/cvit-mip/chextriev.
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1 Introduction

In clinical practice, expertise accumulates with experiences [1]. Clinicians often
use case-based reasoning [2] to understand and diagnose patients by drawing
parallels between past cases and current presentations. This analogy-driven ap-
proach hinges on effectively retrieving relevant past cases, making medical image
retrieval (MIR) a cornerstone of evidence-based clinical decision-making. MIR
facilitates the identification of similar past cases, allowing clinicians to: (i) refine
diagnosis by suggesting investigative features or proposing alternative diagnoses,
(ii) optimize treatment planning based on past outcomes, and (iii) enhance ex-
planation and failure recovery by identifying clinically relevant past errors and
their corrective actions [3]. As such, robust MIR systems hold significant poten-
tial to improve patient outcomes and advance medical care.

Despite its promise, MIR presents distinct challenges [4]. Unlike general-purpose
image retrieval, which focuses on global image regions, MIR has to contend
with images that exhibit similar global features across patients, with subtle,
fine-grained markers serving as critical disease indicators. This is particularly
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evident in chest radiographs, the most common yet challenging imaging modal-
ity. Its interpretation is prone to errors due to the two-dimensional projection
of three-dimensional structures, leading to the superimposition of anatomies,
low-contrast features, and multiple subtle, non-specific abnormalities. Studies
suggest error rates as high as 30% in patients with abnormal findings and with
up to 56% disagreement among radiologists [5]. MIR, especially for cases with
multiple findings, remains understudied despite major strides in computer vision
for multi-label settings [6].

Automated case-based retrieval of chest radiographs necessitates learning dis-
criminative yet informative representations that can help bridge the gap between
low-level visual features and high-level clinical interpretations. Hashing, widely
used for computational and storage efficiency, maps high-dimensional features to
compact hash codes. Advances in deep learning offer end-to-end training of deep
hashing models such as DRH [7], OSDH [8] and SH-EBM [9] for multi-label chest
radiographs, automatically learning both features and hash codes. However, they
often lose crucial information related to disease classification and the regions of
interest. This has been addressed recently with attention-based triplet hashing
(ATH) [10] to implicitly focus on specific regions. ATH still relies on global im-
age representation, potentially limiting its ability to capture fine-grained clinical
information. Other emerging cross-modal approaches, such as MMDL [11] and
X-TRA [12], incorporate text reports. Existing MIR approaches use image rep-
resentations which do not fully leverage radiologists’ systematic approach [13]
to read chest radiographs, where the anatomical location of observed findings
is often used for differential diagnosis. While focusing on anatomy has shown
promise in classification (AnaXNet [14]), change detection (CheXRelNet [15]),
and report generation (RGRG [16]), to our best knowledge, no work has at-
tempted to incorporate anatomical reasoning into the retrieval process itself.

In this paper, we focus on MIR for chest radiographs aiming to find relevant
cases solely from visual content. Our approach addresses the limitations of cur-
rent multi-label retrieval methods by leveraging anatomy-aware representation
learning. Unlike existing methods that rely on global features, we explicitly tar-
get the subtle, yet critical informative details from specific anatomical regions
and fuse them to learn a richer representation that incorporates the interplay
between anatomical location and radiological findings. This contextualization,
grounded in evidence-based anatomy[17], leads to more accurate, effective and
efficient retrieval compared to methods using solely global features. Furthermore,
we incorporate anatomy-aware saliency to highlight regions contributing to the
retrieval decision to build model understanding and transparency.

2 Method

Case-based chest radiograph retrieval systems identify images from a collection
which are similar to a given query image. This is achieved by analyzing the
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Fig. 1. A schematic illustration of CheXtriev.

visual content of the radiographs as well as focusing on the presence and lo-
cation of anatomical abnormalities. In this work, we propose a system called
CheXtriev, which first extracts informative features from anatomically defined
regions and constructs a graph where nodes represent regions and edges capture
spatial relationships and potential co-occurrences between findings. The graph
leverages learnable location and edge embeddings to capture spatial context and
relationships between regions, allowing a graph transformer architecture with
global edge-aware attention and gated residuals to learn robust global-local con-
text representations for accurate, effective and efficient retrieval. An overview of
our proposed pipeline is shown in Figure 1.

2.1 Thoracic Radioanatomic Region Representation Extraction

Radiologists systematically analyse chest radiographs by sequentially assessing
anatomical structures and interfaces to precisely detect abnormalities. Inspired
by this, we identify eighteen essential anatomical regions in frontal radiographs.
These regions include the right and left lungs, encompassing their apical, upper,
mid, and lower zones, as well as the right and left hilar structures, costophrenic
angles, mediastinum (and its upper portion), cardiac silhouette, and trachea. We
obtain the anatomical region representations R = {ri}Ni=1 ∈ RN×DR , where N
is the number of regions and each ri of dimension DR is extracted by a fixed,
pretrained ResNet50 feature extractor after the last global average pooling layer.

2.2 Modeling Inter-Region Relationships with Graph Transformer

The complex diagnostic reasoning process of a radiologist relies on anatomical
interdependence, spatial pattern recognition, and disease co-occurrence. We de-
sign a novel graph transformer [18] framework, to capture both global and local
contexts and learn latent relationships between different regions.

Feature projection and location embeddings. We project each of the re-
gion’s features ri ∈ RDR with a two-layer perceptron (MLP) with one ReLU non-
linearity. We learn N location embedding vectors EL ∈ RDR×N to distinguish



4 N. Akash et al.

between one anatomical region from the other. Combining the features with cor-
responding embedding vectors provides a rich representation r̃i = MLP(ri)+EL

i .

Edge-aware graph attention. To model anatomical relationships, we con-
struct a graph with learnable continuous edges to capture inter-region dependen-
cies. Each edge in the graph connects two regions, denoted as j and i (neighbour
and reference region, respectively). We calculate C-way multi-head attention
that incorporates both region features and learnable edge information as follows.
Reference region features hi and neighbouring region features hj are transformed
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corresponds to lth layer. Edge features eij are learnt and encoded and added into
the key vector as additional information for each layer, allowing the model to cap-
ture context-specific latent relationships beyond inherent node features: ec,ij =
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exponential scale cosine similarity function and DT is the hidden size of each
head. We calculate a weighted sum of neighbouring region features, incorporating
both node and edge information, and make a message aggregation to the refer-

ence region as: v
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Multi-level feature aggregation. We introduce shared-source gated resid-
ual connections to selectively aggregate global-local context-aware features as:
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representation incorporates more comprehensive, fine-grained information at dif-
ferent levels of granularity to better detect abnormalities among different regions.

Classifier. We average the multi-head output on the last layer L of graph trans-

former and remove non-linearities: ĥ
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i . We feed the mean-pooled features into

shared linear layers for multi-label classification using class-wise binary cross-
entropy loss. We perform normalization on the final layer features to obtain
dense vectors that capture anatomy-aware representations for similarity search.

2.3 Efficient Retrieval and Visual Interpretability for Similarity

To efficiently retrieve relevant chest radiographs, we adopt a fast and exact k -
nearest neighbour retrieval model using FAISS [19]. It builds a flat index for
our encoded, dense data embeddings, enabling efficient inner product similarity
search with the query vector. This non-parametric approach effectively identifies
radiographs with the highest cosine similarity from the pre-built vector database.
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In order to visually interpret the results, we adopt an occlusion-based method
[20] and derive similarity-based saliency maps. Instead of using small, sliding oc-
clusions, we directly occlude pre-defined anatomical regions within the retrieved
image. We then calculate the cosine similarity between the query image and
each occluded version. Regions causing significant drops in cosine similarity are
deemed critical for overall similarity, while those with minimal change are con-
sidered less important. This analysis is visualized as a saliency map, highlighting
the most influential regions for similarity between the query and retrieved image.

3 Experiments

3.1 Data

We use the MIMIC-CXR-JPG v2.0.0 [21] database for all our experiments and
follow the official MIMIC-CXR [22] data splits. We select the frontal chest ra-
diograph images (PA or AP view) with valid bounding box coordinates for all
eighteen anatomical regions. These annotations are provided by the Chest Im-
aGenome v1.0.0 [23] dataset, which is constructed from MIMIC-CXR. This re-
sulted in 226,473 training, 1,863 validation, and 3,191 testing images. Similar
to AnaXNet [14], we focus on nine specific findings: lung opacity (LO), pleural
effusion (PE), atelectasis (AT), enlarged cardiac silhouette (ECS), pulmonary
edema/hazy opacity (PE/HO), pneumothorax (PTX), consolidation (CONS),
fluid overload/heart failure (FO/HF) and pneumonia (PN). We consider a ra-
diograph positive for a finding if any region is labelled positive for that finding.
We evaluate the retrieval performance by querying each test radiograph with
findings against the remaining test set as the database.

3.2 Experimental Settings

In our experiments, we resize all chest radiographs to 224 × 224. The graph
transformer consists of 2 layers with 8 multi-head attention heads and the model
dimension is set to DT = 64. We utilize the Adam optimizer with a learning rate
of 1e − 4 in PyTorch Lightning. We incorporate early stopping based on vali-
dation loss with patience of 4 evaluations. Training is limited to a maximum
of 30 epochs with a batch size of 16 and gradient accumulation occurs every 8
epochs. Further, we use a learning rate schedule with a reduction factor of 0.1
and set gradient clipping to 0.5. The training process was distributed across four
NVIDIA GeForce RTX-2080 Ti GPUs.

Metrics. We use three metrics [10] to assess the precision and quality of re-
trieval: (i) Average Precision (AP) measures the average position of relevant
cases within the retrieved list, thus evaluating the ranking quality, (ii) Hit Ratio
(HR) indicates the proportion of retrieved cases that are relevant, thus reflecting
the retrieval effectiveness, (iii) Reciprocal Rank (RR) is the reciprocal of the rank
of the first relevant case in the returned list, assessing the retrieval efficiency.
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Table 1. Impact of design choices in CheXtriev on retrieval and ranking performance.
Here, IRM and MLF denote inter-anatomic region modelling using graph transformers
and multi-level features with gated residuals, respectively.

Variants IRM Edge Connectivity Location MLF mAP mHR mRR

V0 ✕ ✕ ✕ ✕ 51.8 39.7 54.0
V1 GT Shared Binary ✕ Global 52.9 39.9 55.2
V2 GT Shared Uniform ✕ Global 53.9 40.8 56.3
V3 GT Shared Uniform Learnable Global 54.0 40.9 56.4
V4 GT Unique Ri −Rj Learnable Local 51.8 39.8 53.7
V5 GT Unique Ri −Rj ✕ Global 54.6 40.9 57.1
V6 GT Unique Ri −Rj Learnable Global 55.1 40.7 57.4

4 Results and Discussion

Various variants of the proposed solution, namely, CheXtriev, were constructed
to assess the contributions of various components. First, we present the evalu-
ation results of these variants. Then, we highlight the strengths of CheXtriev,
such as learning from anatomy-aware features via a local approach using the
results of benchmarking experiments.

CheXtriev variants. The performance results of the variants are presented in
Table 1. The baseline variant (V0) solely relies on the mean pooling of extracted
region features and achieves 51.8% mAP, 39.7% mHR, and 54.0% mRR. The
consistent performance boost observed from V1 to V6 (in global MLF), ranges
from +2.1% (in mAP for V1) to +6.4% (for V6); this underscores the advantage
of graph transformers with fully connected unique learnable edges over uniform
edge-sharing schemes and naive handcrafted adjacency. This result also suggests
that the retrieval task benefits from considering all region pairs, potentially cap-
turing intricate latent relationships between regions. It can be seen that local
gated residual connections (V4) lead to a significant drop in performance (6.38%
lower mAP and 6.89% lower mRR) relative to a global one (V6). This empha-
sizes the value of global gated residual connections with selective refinement
for learning multi-level features. The fact that V6 and V3 outperform V5 and
V2, respectively, suggests that the learnable location embedding improves model
performance by capturing crucial spatial context for accurate ranking.

Assessment of anatomy-aware feature extraction. A trend that can be observed
from Table 1 is that relative to the baseline V0 which lacks inter-region re-
lationship modelling, all graph transformer (GT) variants have a modest but
consistent improvement in identifying relevant cases (similar mHR). This sug-
gests that, in general, anatomy-aware feature extraction is more effective (than
a strategy that does not consider anatomical relationships) at retrieving relevant
cases, and the design of CheXtriev (V6) gives it an additional edge to precisely
rank and retrieve these cases (higher mAP and mRR).
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Table 2. Comparison of top-5 retrieval performance on MIMIC-CXR dataset against
global baselines (CNN, ATH) and a local variant (AnaXNet). (.)∗ indicates p < 0.05.

Global CNN ATH [10] AnaXNet [14] CheXtriev

Findings AP HR RR AP HR RR AP HR RR AP HR RR

LO 90.4∗ 85.9∗ 92.2∗ 88.2∗ 82.2∗ 90.9∗ 88.8∗ 82.9∗ 91.2∗ 91.7 87.6 93.3
PE 68.6∗ 54.7∗ 72.6 62.1∗ 46.3∗ 66.1∗ 63.7∗ 46.2∗ 67.2∗ 71.4 59.4 74.7
AT 60.3∗ 44.1∗ 64.2∗ 54.3∗ 36.8∗ 57.8∗ 59.1∗ 42.3∗ 62.8∗ 64.4 49.1 67.6
ECS 64.7∗ 48.3∗ 67.9∗ 61.3∗ 45.4∗ 64.9∗ 64.7∗ 48.5∗ 68.4∗ 69.4 56.0 73.7
PE/HO 56.5∗ 40.2∗ 59.2∗ 51.8∗ 34.7∗ 54.7∗ 53.5∗ 34.9∗ 57.4∗ 62.5 47.8 65.8
PTX 22.4∗ 8.5∗ 22.7∗ 8.9∗ 4.0∗ 9.1∗ 31.1 12.7 31.8 31.5 12.5 32.4
CONS 24.2∗ 13.2 25.2∗ 23.3∗ 11.8∗ 23.8∗ 27.6 12.5 28.3 31.6 14.6 32.7
FO/HF 14.8∗ 7.3∗ 14.8∗ 15.8∗ 7.0∗ 16.2∗ 17.8∗ 7.2∗ 17.9∗ 28.8 11.8 29.3
PN 39.0∗ 23.0∗ 41.3∗ 37.1∗ 21.9∗ 38.8∗ 41.4∗ 23.6∗ 43.4∗ 44.7 27.1 47.2

Mean 49.0 36.1 51.1 44.8 32.2 46.9 49.7 34.5 52.0 55.1 40.7 57.4
wMean 67.0 55.2 69.6 63.1 50.5 66.1 65.7 52.2 68.6 70.8 59.5 73.4

Assessment of global vs. local approaches.We compare the performance results of
CheXtriev, against both global and local methods. Table 2 presents these results
for top five retrieved images. Two global baselines are considered, one based on
ResNet-50 extracted dense features (column 1) and ATH [10], a SOTA retrieval
approach (column 2). A student’s t-test was done to establish the statistical sig-
nificance of the difference in results between CheXtriev and the baselines, and
the significant values (p < 0.05) are marked with an asterisk. Relative to both
the global baselines, CheXtriev has higher AP values across all nine investigated
findings, with these ranging from 91.7% (LO) to 28.8% (FO/HF). This trend
also holds for HR and RR metrics. Both macro-mean and weighted mean met-
rics are reported in the last two rows of Table 2 to draw insights into the overall
retrieval efficacy from an unbalanced database. Macro-mean assigns equal weigh-
tage to all findings, which may introduce a bias to frequently occurring classes.
Hence, the weighted mean assigns weights to classes inversely proportional to
their frequency. It can be observed that the weighted mean is higher than the
macro mean for all metrics. The mAP improvement over the baselines ranges
from at least 12% (first column) to a notable 23% (second column). The note-
worthy point is that the improvement is quite significant for classes with lower
prevalence, such as FO/HF (+82.3% to +94.6%), PTX (+40.6% to +253.9%),
CONS (+30.6% to +35.6%), PN (+14.6% to +20.5%), demonstrating CheX-
triev’s ability to learn more discriminative and powerful visual representations
compared to global methods. These results point to CheXtriev’s ability to ac-
curately rank and efficiently retrieve relevant cases, even for less frequent classes.

We also compare CheXtriev against AnaXNet, a SOTA local approach designed
for classification tasks. CheXtriev exhibited significant improvements in mean
AP, particularly for findings associated with known blind spots [24,25] in chest
radiographs, such as lung apices, hilar structures and inferior lung bases (for ex-
ample, FO/HF +61.80%, PE/HO +16.82%, CONS +14.49% higher). This can
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Fig. 2. Retrieval performance and saliency map analysis for a sample query image with
enlarged cardiac silhouette (ECS). Each row displays the top 4 retrieved images and
their corresponding occlusion-based saliency maps generated by CheXtriev, AnaXNet,
ATH and Global CNN (top to bottom). A retrieved image is considered correct if it
matches the specific finding of interest, in this case ECS, as the query image.

be attributed to CheXtriev’s global edge-aware attention mechanism and fully
connected learnable continuous edges, which enable it to capture anatomical re-
lationships and latent finding co-occurrences more effectively than AnaXNet’s
naive handcrafted binary edges and limited expressiveness from neighborhood
aggregation. Additionally, CheXtriev’s location embeddings and gated resid-
ual connections have aided in learning superior visual representations, building
upon the strengths of local approaches to capture well the subtle abnormalities
in areas prone to human error during interpretation. The results also indicate
classification-optimized features may not be the most effective for retrieval.

Interpretability analysis. We analyze saliency maps [20] to assess which anatomi-
cal regions influenced retrieval for each query image (see Figure 2). The first three
retrieved images by CheXtriev all exhibit ECS, with the saliency maps highlight-
ing a focus on the cardiac silhouette region. However, in the saliency map for
the fourth retrieved image, the model’s attention diffused throughout the lung
region, indicating an incorrect retrieval. Some images retrieved by AnaXNet lack
any findings for ECS. Even though ATH and CNN manage to retrieve correct
cases, the corresponding saliency maps highlight irrelevant regions. This suggests
other models might be overly sensitive to visual changes in irrelevant parts of
the image, potentially due to weaknesses in encoding spatial information and
context within the image. We also note that these saliency maps may not be
meaningful for methods that do not use anatomy-aware features, underscoring
the additional benefits of our approach.
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5 Conclusion

In this work, we propose CheXtriev, a graph-based radiograph retrieval model
inspired by the systematic approach radiologists use to interpret radiographs and
grounded in evidence-based anatomy. Key novel features of our approach were
explicitly targeting informative details from specific anatomical regions, mod-
elling the interplay between anatomical location and findings and fusing them
into a richer anatomy-aware representation. Superior results over existing meth-
ods underscore the benefit of this contextualization in achieving more accurate,
effective, and efficient case retrieval, particularly for the less prevalent findings.
A preliminary analysis with anatomy-aware saliency maps indicates that it may
be possible to use them, albeit with some further extension to cover multiple
findings, for interpretability of the retrieved results. Overall, CheXtriev offers a
promising approach for medical image retrieval tasks, particularly in chest ra-
diography, where subtle anatomical variations hold significant diagnostic value.
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