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Segmentation and analysis of sub-cortical structures is of
interest in diagnosing some neurological diseases. Segmen-
tation is a challenging task because of brain tissue ambiguity
and data scarcity. Deep learning (DL) solutions are widely
used for this purpose by considering the problem as a seman-
tic segmentation of the brain. In general, DL approaches ex-
hibit a bias towards larger structures when training is done on
the whole brain. We propose a method to address this prob-
lem wherein a pre-training step is used to learn tissue char-
acteristics and a rough ROI extraction step aids focusing on
local context. We use a Residual U-net for demonstrating the
proposed method. Experiments on the IBSR and MICCAI
datasets show that our proposed solution leads to an improve-
ment in segmentation performance in general with medium
and small size structures benefiting significantly. The per-
formance with the proposed method is also marginally better
than a more complex, state of art sub-cortical structure seg-
mentation method. A strength of the proposed method is that
it can also be applied as a modification to any existing seg-
mentation solution.

1. INTRODUCTION

Sub-cortical (unlike cortical) structures are grey matter struc-
tures embedded in white matter which vary widely in size.
This poses a challenge for their segmentation. With the pop-
ularity of deep learning, deep neural networks have been ex-
plored extensively for segmentation including the sub-cortical
structures [1]. The U-net [2] has proven to be a resilient
blueprint for segmentation tasks in general since its encoder-
decoder design enables learning from smaller medical image
datasets.
Many variants of the U-net have been introduced for sub-
cortical structure segmentation [3, 4, 5] with reasonable im-
provements. A label refinement strategy with two concate-
nated U-nets is used in [5] and [3] introduced competitive
dense blocks and multi-slice information aggregation. ψ-net
[4] uses a densely convolutional LSTM module for select-
ing and enhancing features. Wang et al.[6] proposed a Resid-
ual Attention Network which uses self-attention to compute
3D attention maps. Hu et al.[7] proposed a compact module
called squeeze and excitation block to compute channel-wise
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attention.
All existing methods are agnostic to the size variation among
the structures to be segmented and pass the whole volume
or fixed size patches. This creates a class imbalance while
training. A performance bias can be observed towards the
segmentation results for bigger structures in most of the pro-
posed solutions. Possible reasons include i) inconsistency
in annotations of large vs. small structures across subjects,
as the former are easier to annotate compared to the latter,
ii) insufficient image resolution leading to more inaccurate
boundaries for smaller structures and iii) learning both large
and small structures from many (for the former) versus few
(for the latter) voxels is inefficient. While the first two is-
sues cannot be resolved easily, the last one can be resolved by
taking a different approach. Towards this end, in this paper,
we propose to make the network learn the structures from its
local rather than global context such as the whole brain im-
age. This should aid the network in focusing on each struc-
ture separately irrespective of their size, giving an edge to
smaller structures. Additionally, we propose a pre-training
step to learn tissue types to aid in discriminating between tis-
sue types, as the local context information alone can be inad-
equate for efficient segmentation.

2. METHOD

The proposed method focuses on narrowing the disparity in
performance between structures of different sizes. To this
end, we propose a 2 phase segmentation framework. The
phases are: 1) Grey matter (GM), White matter (WM), Cere-
brospinal fluid (CSF) segmentation for pre-training. 2) Sub-
cortical segmentation with atlas-guided ROI extraction.
The objective of phase 1 is to help the network learn to dis-
criminate between the main tissue types in the brain, (GM,
WM and CSF), which in turn should aid sub-cortical struc-
ture segmentation since these structures are GM embedded
in WM deep inside the brain. In this pre-training phase, 3D
volume is fed to the network with GM, WM and CSF labels,
computed using FSL[8] as ground truth.

In the next phase, weights of previous phase are loaded as
initial weights and a rough ROI patch is extracted for each
of the sub-cortical structures and fed to the Network with the
structure labels as ground truth. The output after this phase of
training is the probability map for each structure. The prob-



Fig. 1. Proposed 2-phase training framework for sub-cortical structure segmentation. Phase 1: Pre-training , Phase 2: Structure
segmentation from the 3D structure ROI.

ability maps are then combined, with maximum probability
at each pixel to get the final segmentation map. The moti-
vation behind this strategy is to counteract the variability in
sizes of the structures, it ensures that smaller structures get
equal priority while training compared to methods that pro-
vide sub-cortical region/whole volume as input. In our exper-
iments, the rough ROIs are extracted by an affine alignment
of the atlas to the MRI volume. A relaxation step (expanding
ROI size by a few pixels) was done for each 3D ROI patch
to compensate for imprecise alignment and to prevent under-
segmentation. The two phases of training that has been pro-
posed network are illustrated in Fig. 1.

2.1. Implementation Details

We employ 3D U-Net[9] based architecture with Resid-
ual Blocks with 3 encoder-decoder levels. Each Residual
block consists of two 3D convolutional layers followed by
Instance Normalization and ReLU-activation. After each
block of the encoder, downsampling is performed using max
pooling layer and upsampling is done using transpose con-
volution layer. Adam optimizer is used with initial learning
rate 0.0001, β1 = 0.9 , β2 = 0.999 and weight decay
of 0.001. Categorical cross entropy is used as the loss
function for phase 1. A sum of unweighted soft dice loss
and categorical cross entropy loss is utilized to train the
model in phase 2. The code was implemented using Py-
Torch and training was done on NVIDIA GTX 2080 with
11GB RAM. A fixed atlas [10] was used for extracting
ROIs in training and testing phases.Implementation is avail-
able at https://github.com/mythri-venkat/
subcortical_segmentation.

3. EXPERIMENTS

Two publicly available datasets were used to perform exper-
iments: IBSR [11] and MICCAI [12] datasets with 18 and

35 volumes, respectively. The voxel size in IBSR is variable,
namely, 0.93× 0.93× 1.5 or 1× 1× 1.5 whereas in MICCAI
dataset it is uniformly 1× 1× 1.25. Both these datasets pro-
vide labels for both cortical and sub-cortical structures. Vol-
ume is cropped to sub-cortical region (80x80x80 voxels). A
6-fold validation was done on IBSR dataset while a 5-fold val-
idation was done for MICCAI and the results were averaged
across all the folds for reporting. In order to understand the
size induced performance variations, analysis was done with a
sizewise ordering of structures, i.e. structures are divided into
4 classes: very small, medium, large and very large. In terms
of volume, these are approximately 4%, 20%, 50% of the av-
erage size of the largest structure in the ’very large’ category
(namely the thalamus)

Quantitative evaluation of segmentation with respect to
ground truth was done using the Dice Similarity Coefficient
(Dice) [13]. Dice helps assess the overlap between the pre-
dicted segmentation (A) result and the ground truth (B). It is
defined as Dice(A,B) = 2×|A∩B|

|A|+|B| . Dice value lies between
0 and 1, where former constitutes no overlap and latter repre-
sents complete overlap with ground truth.

4. RESULTS

The performance of a Residual U-net with the proposed 2-
phase training approach was assessed by comparing against
plain Residual U-net trained with volume cropped to sub-
cortical region. The obtained results are presented in Table 1.
Dice values are given for the structures at an individual as well
as at a group (sizewise) level. In order to understand the con-
tribution from each phase of training, ablation studies were
done. The three variants considered were: Segmenting af-
ter pre-training (PT), after ROI extraction (ROI), and with the
proposed 2-phase training. These were evaluated on the IBSR
and MICCAI datasets and results are reported in Table 1. A
performance degradation of 22% is observed in Dice value
for the very small structure group relative to very large class



IBSR Dataset MICCAI Dataset
Dice (Mean ± STD) Av. Improvement(%) Dice (Mean ± STD) Av. Improvement(%)

Left &
Right

Res. U-net
(baseline) Proposed

PT&
ROI PT ROI

Res. U-net
(baseline) Proposed

PT&
ROI PT ROI

1. Very Small
Accumbens 0.697 ± 0.049 0.735 ± 0.039 5.55 2.1 3.3 0.75 ± 0.084 0.783 ± 0.044 4.8 1.8 4.05
2. Medium
Amygdala 0.736 ± 0.055 0.766 ± 0.048 0.776 ± 0.046 0.816 ± 0.025
Pallidum 0.804 ± 0.025 0.831 ± 0.021 3.7 1.325 3.4 0.845 ± 0.076 0.875 ± 0.025 4.35 3.5 4.225

3. Large
Caudate 0.868± 0.018 0.876± 0.02 0.866 ± 0.10 0.877 ± 0.050
Hippocampus 0.809 ± 0.021 0.824 ± 0.023 0.846 ± 0.028 0.863 ± 0.021
Putamen 0.884 ± 0.015 0.895 ± 0.012

1.3 0.533 0.617
0.893 ± 0.061 0.905 ± 0.035

1.56 0.5 1.45

4. Very Large
Thalamus 0.893 ± 0.008 0.904 ± 0.008 1.3 0.75 0.55 0.901± 0.035 0.914 ± 0.021 1.4 0.95 1.35
Av. 2-4 0.832 ± 0.023 0.849 ± 0.022 0.855 ± 0.058 0.875 ± 0.029
Av. full 0.814 ± 0.027 0.834 ± 0.024 0.839 ± 0.061 0.862 ± 0.031

Table 1. Performance analysis of the proposed method. Dice scores averaged over 6 or 5 folds are listed for a baseline Res.
U-net and its variants: Trained with Proposed method, only with pre-training (PT) and only with ROI training (ROI).

Fig. 2. For IBSR dataset A) Improvement in Dice score (% )
of structures of different sizes for proposed method.Base line
is a plain U-Net and Res. U-Net B) Qualitative results for
proposed method (Res. U-Net)

group for baseline Res. U-net. The state of the art (SOTA)
ψ-net also reports a 17.6% deterioration[4]. This underscores
the need for developing a strategy to overcome size-specific
performance variations. The Dice value for smaller structures
in both the datasets show improvements with the proposed
modifications in training compared to the larger ones. An-
other observation from Table 1 is that the improvement with
the proposed method is significant from both phase 1 and 2 for
smaller structures compared to larger ones. Results for MIC-
CAI dataset appear to be more influenced by pre-training and
ROI-based training compared to IBSR. This is possibly due

to the difference in data quality. In MICCAI (relative to the
IBSR images), the voxel resolution in the axial direction is
better; the contrast between tissues and the quality of the im-
age is also superior. Thus, the proposed method appears to
boost segmentation performance in general with the quantum
of boost being affected by the data quality/resolution which is
a fundamental issue for segmentation.

Our proposed training strategy was applied to a vanilla
U-net to determine the generalizability of the proposal. The
improvement in Dice scores obtained for the different groups
of structures is presented as a bar graph in Fig. 2(A). The
trends of improvement obtained with Res U-net is also con-
sistently replicated for the U-net, even though the quantum
of improvement is less for U-net, which is to be expected.
Sample outputs of the proposed method for IBSR dataset are
shown in Fig. 2(B) for visual comparison and it is observed
that the labels obtained with the proposed method are very
close to the ground truth with smooth boundaries.

Dice
Freesurfer 0.74 ± 0.11

FIRST 0.81 ± 0.08
U-net 0.80 ± 0.03

Res. U-net 0.81 ± 0.03
ψ-net 0.82 ±0.03

Proposed Method 0.83 ± 0.02

Table 2. Performance comparison with standard (available in
toolboxes) and state of the art solution for sub-cortical struc-
ture segmentation on IBSR dataset.

Finally, a comparison is made with baseline segmentation


